티스토리 뷰

부경대 IT융합응용공학과 권오흠 교수님의 영리한 프로그래밍을 위한 알고리즘 강좌와 '쉽게 배우는 알고리즘: 관계중심의 사고법 - 문병로'등을 통한 알고리즘 학습 강좌 링크

2-6. Recursion의 응용 3 - n queens problem

N-Queens problem(n=8)

  • 아래의 예(n=8)에서는 8 x 8 체스보드에 8개의 말을 놓는데,

  • 그중에 어떤 말들도 동일한 행, 동일한 열, 동일한 대각선 상에 오지 않도록

  • n개의 말을 놓을 수 있는가에 대한 문제이다.

  • 위의 방법대로 n개의 말을 놓으려면, 결국 조건을 만족하면서 하나의 행에 하나의 말이 와야한다.

Backtracking

  • 내가 지나온 길을 다시 되돌아 가면서 문제를 해결한다.

  • 어떠한 결정들을 내려가다가, 결정이 막다른 길이다. 즉, 그 결정을 내려서는 안된다 라는것이 분명해지면, 가장 최근에 내렸던 결정을 번복한다.

  • 이런식으로 문제를 해결한다.

상태공간트리

  • 1번 말이 (1,1)에 위치했을 때, 그리고 그때 2번말이 (2,1), (2,2), (2,3), (2,4)에 위치했을 때, …. 를 나타내는 트리이다.

  • 실제로 완성된 상태공간트리를 그린다면, 4 x 4의 체스보드에 n개의 말을 놓을 수 있는 모든 경우의 수를 나열하는 그림이 될 것이다.

  • 상태공간트리란 찾는 해를 반드시 포함하는 트리이다.

  • 즉, 해가 존재한다면 그것은 반드시 이 트리의 어떤 한 노드에 해당한다.

  • 따라서, 이 트리를 체계적으로 탐색하면 해를 구할 수 있다.

상태공간트리의 모든 노드를 탐색해야 하는 것은 아니다

  • 상태공간트리를 탐색한다는 것은 실제로 모든 트리를 탐색한다는 것이 아니다.

  • 그리고 실제로 트리를 그리거나, datastructure로 만든다는 뜻이 아니다.

  • 상태공간트리는 하나의 개념적인, 논리적인 것이다.

  • 이런 트리를 개념적으로 염두해두고, 실제로는 이 트리의 노드를 탐색하는 코드를 만들면 된다.

Backtracking

  • 상태공간트리를 깊이 우선 방식으로 탐색하여 해를 찾는 알고리즘을 말한다.

  • 알고리즘을 구현하는 방법은 recursion으로 구현하는 방법과 stack을 이용하여 구현하는 방법이 있다.

  • recursion을 이용하여 구현하는 것이 쉽고, 간명하기 때문에 대부분의 경우 recursion으로 backtracking 알고리즘을 구현한다.

Design Recursion

  • arguments(매개변수)는 내가 현재 트리의 어떤 노드에 있는지를 지정해야 한다.

    • 즉, 상태공간트리에서 어떤 노드에 도착했다. 를 나타내야 한다.

  • 그리고 이 함수에서 수행할 코드는 어떤 노드에 도착했을때, 그 이후에 행해져야할 작업들이다.

    1. if -> 제일 먼저 할 것은 이 노드가 non-promising 또는 infeasible한 노드인지를 판단한다. 즉, 해당 노드의 아래 깊이를 더 탐색해볼 가치가 있는 노드인가를 판단한다. 아니라면 되돌아간다.

    2. else if -> 그렇지 않다면, 어떤 노드에 도착했는데 답을 찾은 경우라면, 답을 출력하고 return 한다.

    3. else if -> 그렇지 않다면, 그 노드가 실패도 아니고 답도 아니라면, 해야 할 일은 해당 노드의 자식들을 순서대로 방문해보는 것이다. recursive하게.

  • Backtracking을 구현하는 대부분의 함수들은 기본적으로 이런 구조를 가진다.


return-type queens(arguments) {
 if non-promising
   report failure and return;
 else if success
   report answer and return;
 else
   visit children recursively;
}
  • 매개변수와 전역변수를 유지함으로써 현재 어떤 노드에 위치하고 있는지를 나타낸다.

    • 매개변수 level은 현재노드의 level을 표현하고, i번에서 level번째말이 어디에 놓였는지는 전역변수 배열 cols로 표현한다. cols[i]=j는 i번 말이 (i행, j열)에 놓였음을 의미한다.

  • return type은 boolean으로 성공이냐 실패냐를 반환한다.

  • non-promising여부를 판단하는 함수를 만들었다고 가정하고, 검증 후 false를 리턴한다.


int[] cols = new int[N+1];
boolean queens(int level) {
 if (!promising(level)))
   return false;
 else if success
   report answer and return;
 else
   visit children recursively;
}
  • promising 검증을 통과했다는 가정(이 말은 현재까지 놓인 말들이 충돌 없이 잘 놓여졌다는 의미이다.)하에 level==N이면 모든 말이 놓였다는 의미이고 따라서 성공이다.


int[] cols = new int[N+1];
boolean queens(int level) {
 if (!promising(level)))
   return false;
 else if (level==N)
   return true;
 else
   visit children recursively;
}
  • 마지막으로 자식노드들을 recursive하게 방문하는 코드이다.

    • 이 때는, 1번 말부터 level번째 말까지 잘 놓였다는 의미이고 따라서 level+1번째 말을 1열과 N열 사이에서 어느 곳에 놓아야 하는 가에 대한 고민을 해야한다. N가지 선택 가능한 경로가 있다.

    • level+1번째 말을 각각의 열에 놓은 후 recursion을 호출한다.

    • 코드에서 보면 level+1번의 말을 i에 놓아보고 queens(level+1)을 호출한다. 이것이 true라면 true를 리턴하고, 실패라면 다시 돌아가서 i+1번째 열에 놓고 다시 검증한다.


int[] cols = new int[N+1];
boolean queens(int level) {
 if (!promising(level)))
   return false;
 else if (level==N)
   return true;
 for (int i = 1; i <= N; i++) {
   cols[level + 1] = i;
   if(queens(level+1))
     return true;
}
 return false;
}

Promising Test를 어떻게 할 것인가

  • 위의 코드에서 보면 queens()메소드를 호출할 때 마다 promising 여부를 검증하고 있다. 따라서 cols[]의 1,2,3에 해당하는 말들 간에는 충돌이 없다고 보장되어 있다.

  • 따라서 마지막에 놓인(cols[4]) 이 말이 이전에 놓인 다른 말들과 충돌하는지 검사하는 것으로 충분하다.

  • 코드는 다음과 같은 방식으로 작성한다.

    • 같은 열에 놓였는지,

      • cols[i] == cols[level]

    • 동일 대각선상에 놓였는지를 검사한다.

      • (level - i) == Math.abs(cols[level] - cols[i])


boolean promising(int level) {
 for (int i = 1; i < level; i++) {
   if (cols[i] == cols[level])
     return false;
   else if ((level - i) == Math.abs(cols[level] - cols[i]))
     return false;
}
 return true;
}

정리

  • 말이 놓인 위치 출력

  • 첫 호출은 quuens(0)


public class NQueensProblem {
 private final static int N = 8;
 private static int[] cols = new int[N + 1];

 public static void main(String[] args) {
   queens(0);
}

 private static boolean queens(int level) {
   if (!promising(level))
     return false;
   else if (level == N) {
     for (int i = 1; i <= N; i++)
       System.out.println("(" + i + ", " + cols[i] + ")");
     return true;
  }
   for (int i = 1; i <= N; i++) {
     cols[level + 1] = i;
     if (queens(level + 1))
       return true;
  }
   return false;
}

 private static boolean promising(int level) {
   for (int i = 1; i < level; i++) {
     if (cols[i] == cols[level])
       return false;
     else if ((level - i) == Math.abs(cols[level] - cols[i]))
       return false;
  }
   return true;
}
}


(1, 1)
(2, 5)
(3, 8)
(4, 6)
(5, 3)
(6, 7)
(7, 2)
(8, 4)

Process finished with exit code 0






댓글
댓글쓰기 폼